
On the Use of Differential Calculus

in the Formation of Series *

Leonhard Euler

§198 Until now we only considered one single application of differential
calculus in the doctrine of series which was the formation of series itself and
which we mentioned above already, when there was the question how to
expand the fraction whose denominator is an arbitrary power of a certain
function into a series. But this method is similar to that one we already
used several times, where the fraction to be converted into a series is set
equal to a certain series having undetermined coefficients in the single terms
which coefficients are then determined from the constituted equality. But
this determination is often simplified tremendously, if, before it is actually
done, the equation is differentiated once and sometimes even twice. Since this
method has very broad applications in integral calculus let us explain it here
more diligently.

§199 Therefore, at first let us repeat what we discussed above on the expan-
sion of fractions into series without the application of differential calculus. Let
an arbitrary fraction be propounded

A + Bx + Cx2 + Dx3 + etc.
α + βx + γx2 + δx3 + εx4 + etc.

= s,

*Original title: “ De Usu Calculi Differentialis in Formandis Seriebus“, first published as
part of the book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina
serierum, 1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 396 - 421 “, Eneström-
Number E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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which is to be converted into a powers series in x. Assume an undetermined
series for s

s = A+Bx + Cx2 +Dx3 + Ex4 + Fx5 +Gx6 + etc.

Therefore, since, having removed the fraction by multiplication, it is

A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + Gx6 + etc.

= s(α + βx + γx2 + δx3 + εx4 + ζx5 + ηx6 + etc.),

if the assumed series is substituted for s, the following equation results

A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + etc.

= Aα + Bαx + Cαx2 + Dαx3 + Eαx4 + Fαx5 + etc.

+ Aβ + Bβ + Cβ + Dβ + Eβ + etc.

+ Aγ + Bγ + Cγ + Dγ + etc.

+ Aδ + Bδ + Cδ + etc.

+ Aε + Bε + etc.

+ Aζ + etc.

Therefore, having equated the single terms which contain the same powers of
x, it will be

Aα − A = 0

Bα +Aβ − B = 0

Cα +Bβ +Aγ − C = 0

Dα + Cβ +Bγ +Aδ − D = 0

Eα +Dβ + Cγ +Bδ +Aε− E = 0

etc.

from which equations the assumed coefficients A, B, C, D etc. are determined,
and so the infinite series

A+Bx + Cx2 +Dx3 + Ex4 + etc.

equal to the propounded fraction s is found. And this form, if both the
numerator and the denominator of the fraction s consist of a finite number of
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terms, contains all recurring series, which were treated in a lot greater detail
above.

§200 But if either the numerator or the denominator or both were raised to
an arbitrary power, then this way the series is obtained rather difficultly, since
the task, if not a binomial function was raised, becomes very laborious. But
by means of differential calculus this work can be avoided. At first, let the
fraction consist only of a numerator and let it be

s = (A + Bx + Cxx)n,

whence the power series in x equal to this power of the trinomial is to be
found; it is plain that the series will be finite, if the exponent n was an positive
integer. Again, assume an indefinite series for s

S = A+Bx + Cx2 +Dx3 + Ex4 + Fx5 +Gx6 + etc.

whose first term A is known to be = An; for, if one puts x = 0, from the first
propounded form it is s = An, but from the assumed series it is s = A. But
this determination of the first term is to be derived from the nature of the
series itself, if we want to use differentials, since it is not possible to determine
the first coefficient from the differential, as it will be seen soon.

§201 Because it is S = (A + Bx + Cx2)n, by taking logarithms it will be

ln s = n ln(A + Bx + Cx2)

and hence having taken the differentials one will have

ds
s

=
nBdx + 2nCxdx
A + Bx + Cx2 or (A + Bx + Cx2)

ds
dx

= ns(B + 2Cx).

But from the assumed series it is

ds
dx

= B+ 2Cx + 3Dx2 + 4Ex3 + 5Fx4 + etc.

Therefore, if this series is substituted for ds
dx and for s the assumed series itself

is substituted, the following equation will result
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AB + 2ACx + 3ADx2 + 4AEx3 + 5AFx4 + etc.

+ BB + 2BC + 3BD + 4BE + etc.

+ CB + 2CC + 3CD + etc.

= nBA + nBB + nBC + nBD + nBE + etc.

+ 2nCA + 2nCB + 2nCC + 2nCD + etc.

Therefore, having equated the terms of the same power of x it will be

B =
nBA

A

C =
(n− 1)BB+ 2nCA

2A

D =
(n− 2)BC+ (2n− 1)CB

3A

E =
(n− 3)BD+ (2n− 2)CC

4A

F =
(n− 4)BE+ (2n− 3)CD

5A
etc.

Therefore, since, as we saw before, it is A = An, it will be B = nAn−1B and
hence the remaining coefficients will successively be defined. But the law they
follow is obvious from these formulas which would have remained immensely
obscure, if we would have wanted to actually expand the trinomial.

§202 The same method succeeds, if any polynomial function has to raised to
a certain power. Let

s = (A + Bx + Cx2 + Dx3 + Ex4 + etc.)n

and assume

s +A+Bx + Cx2 +Dx3 + Ex4 + etc.;

it will be A = An which value is concluded, if one puts x = 0. Now, having
taken the logarithms their differentials as before will be found to be

ds
s

=
nBdx + 2nCxdx + 3nDx2dx + 4nEx3dx + etc.

A + Bx + Cx2 + Dx3 + Ex4 + etc.
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or

(A + Bx + Cx2 + Dx3 + Ex4 + etc.)
ds
dx

= s(nB + 2nCx + 3nDx2 + 4nEx3 + etc.).

Therefore, since it is

ds
dx

= B+ 2Cx + 3Dx2 + 4Ex3 + 5Fx4 + etc.,

having substituted these series for s and ds
dx it will be

AB + 2ACx + 3ADx2 + 4AEx3 + 5AFx4 + etc.

+ BB + 2BC + 3BD + 4BE + etc.

+ CB + 2CC + 3CD + etc.

+ DB + 2DC + etc.

+ EB + etc.

= nBA + nBB + nBC + nBD + nBE + etc.

+ 2nCA + 2nCB + 2nCC + 2nCD + etc.

+ 3nDA + 3nDB + 3nDC + etc.

+ 4nEA + 4nEB + etc.

+ 5nFA + etc.

Therefore, the following determinations are derived

AB = nBA

2AC = (n− 1)BB+ 2nCA

3AD = (n− 2)BC+ (2n− 1)CB + 3nDA

4AE = (n− 3)BD+ (2n− 2)CC+ (3n− 1)DB+ 4nEA

5AF = (n− 4)BE+ (2n− 3)CD+ (3n− 2)DC+ (4n− 1)EB+ 5nFA

etc.,

whence it becomes clear, how these assumed coefficients A, B, C, D etc.
depend on each other and are hence determined, because it is A = An.
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§203 Since, if the quantity A + Bx + Cx2 + Dx3 + etc. consists of a finite
number of terms and the number n was a positive integer, any power also
has to consist of a finite number of terms, it is obvious that in this case the
formulas just found must finally vanish and, since all finite terms must occur
until the first vanishes, at the same time all following ones must vanish. Let
us put that the propounded formula A + Bx + Cx2 is a trinomial and its cube
is in question that it is n = 3; it will be

A = 2A3 and hence A = A3

AB = 3BA B = 3A2B

2AC = 2BB+ 6CA C = 3AB2 + 3A2C

3AD = 1BC + 5CB D = B3 + 6ABC

4AE = 0 + 4CC E = 3B2C + 3AC2

5AF = − BE + 3CD F = 3BC2

6AG = − 2BF + 2CE G = C3

7AH = − 3BG + 2CF H = 0

8AI = − 4BH + 0 I = 0

Therefore, since already two letters are = 0 and any arbitrary of the following
letters depends on the two preceding ones, it is plain that all following ones
must vanish in like manner. And for this reason the law according to which
these coefficients were found to depend on each other is even more worthy to
be noted.

§204 If n was a negative number such that s becomes equal to a real fraction
the series will continue to infinity. Therefore, let

s =
1

(α + βx + γx2 + δx3 + ϕx3 + εx4 + etc.)n ;

for its value assumes this series

s = A+Bx + Cx2 +Dx3 + Ex4 + Fx5 + etc.
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And if in the above formulas one puts α, β, γ, δ etc. for the letters A, B, C, D
etc. and at the same time n becomes negative, the following determinations of
the coefficients A, B, C, D etc. will result

A = α−n =
1
αn

αB+ nβA = 0

2αC + (n + 1)βB+ 2nγA = 0

3αD+ (n + 2)βC + (2n + 1)γB+ 3nδA = 0

4αE + (n + 3)βD + (2n + 2)γC+ (3n + 1)δB+ 4nεA = 0

5αF + (n + 4)βE + (2n + 3)γD+ (3n + 2)δC+ (4n + 1)εB+ 5nζA = 0

etc.

These formulas contain the same law of these coefficients of numbers we
already observed above in the Introductio and whose validity could therefore
be demonstrated rigorously just now.

§205 Their nature is the same, if the numerator of the fraction was 1 or even
any power of x, say xm; for, in the second case it will only be necessary to
multiply the series found first A+Bx + Cx2 +Dx3 + etc. by xm. But if the
denominator consists of two or more terms, then we did not observe the
law of progression above: therefore, let us investigate it here by means of
differentiation. Hence let

s =
A + Bx + Cx2 + Dx3 + etc.

(α + βx + γx2 + δx3 + εx4 + etc.)n

and assume the following series for the value of this fraction

s = A+Bx + Cx2 +Dx3 + Ex4 + Fx5 + etc.;

to define its first term A put x = 0 and from the first expression it will
be s = A

αn , from the assumed series on the other hand s = A, whence it is
necessary that it is A = A

αn . Having determined this term the remaining ones
will become known by means of differentiation.
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§206 Having taken logarithms it will be

ln s = ln(A + Bx + Cx2 + Dx3 + etc.)

−n ln(α + βx + γx2 + δx3 + εx4 + etc.)

and hence by differentiation this equation will result

ds
s

=
Bdx + 2Cdx + 3Dx2dx + etc.
A + Bx + Cx2 + Dx3 + etc.

−nβdx + 2nγxdx + 3nδx2dx + etc.
α + βx + γx2 + δx3 + etc.

and having got rid of the fractions by multiplication it will be
Aα + Aβx + Aγx2 + Aδx3 + etc.

+ Bα + Bβ + Bγ + etc.

+ Cα + Cβ + etc.

+ Dα + etc.


ds
dx

=


Bα + Bβx + Bγx2 + Bδx3 + etc.

+ 2Cα + 2Cβ + 2Cγ + etc.

+ 3Dα + 3Dβ + etc.

+ 4Eα + etc.

 s

−


Aβ + 2Aγx + 3Aδx2 + 4Aεx3 + etc.

+ Bβ + 2Bγ + 3Bδ + etc.

+ Cβ + 2Cγ + etc.

+ Dβ + etc.

 ns.

Since now it is ds
dx = B+ 2Cx + 3Dx2 + 4Ex3 + etc., after the substitutions it

will be

AαB + nAβA

− BαA

}
= 0

2AαC + (n + 1)AβB + 2nAγA

+ 0BαB + (n− 1)BβA

− 2CαA

 = 0
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3AαD + (n + 2)AβC + (2n + 1)AγB + 3nAδA

+ BαC + nBβB + (2n− 1)BγA

− CαB + (n− 2)CβA

− 3DαA

 = 0

4AαE + (n + 3)AβD + (2n + 2)AγC + (3n + 1)AδB + 4nAεA

+ BαD + (n + 1)BβC + 2nBγB + (3n− 1)BδA

+ 0CαC + (n− 1)CβB + (3n− 2)CγA

− 2DαB + (n− 3)DβA

− 4EαA


= 0.

etc.

Therefore, the law according to which these formulas proceed is easily seen;
for, the first line of each equation follows the same law we had in § 204. But
then the coefficients of the second lines result, if n + 1 is subtracted from the
above coefficients, and in like manner the third line is formed from the second
line and the following from the upper ones - always by subtracting n + 1; but
the letters constituting each term are immediately obvious considering the
structure of the formulas.

§207 But if also the numerator of a fraction was a certain power, namely

s =
(A + Bx + Cx2 + Dx3 + etc.)m

(α + βx + γx2 + δx3 + εx4 + etc.)n ,

and one assumes this series

s = A+Bx + Cx2 +Dx3 + Ex4 + etc.,

it will be A = Am

αn ; but the remaining coefficients will be determined from the
following formulas

AαB + nAβA

− mBαA

}
= 0

2AαC + (n + 1)AβB + 2nAγA

− (m− 1)BαB + (n−m)BβA

− 2mCαA

 = 0
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3AαD + (n + 2)AβC + (2n + 1)AγB + 3nAδA

− (m− 2)BαC + (n−m + 1)BβB + (2n−m)BγA

− (2m− 1)CαB + (n− 2m)CβA

− 3mDαA

 = 0

4AαE + (n + 3)AβD + (2n + 2)AγC + (3n + 1)AδB + 4nAεA

− (m− 3)BαD + (n + m− 2)BβC + (2n−m + 1)BγB + (3n−m)BδA

− (2m− 2)CαC + (n− 2m + 1)CβB + (n− 3m)CγA

− (3m− 1)DαB + (n− 3m)DβA

− 4mEαA


= 0.

etc.

The rule, how these formulas are continued, becomes clear from the inspection
of the above equation more quickly than it can be described by words. While
descending the coefficients are diminished by the difference m + n; but while
proceeding horizontally the differences will continuously be augmented by
the difference n− 1.

§208 Therefore, this way the theory of recurring series is extended, since we
discovered the previously unknown equations for the coefficients, even if not
only the denominator of the fraction was any power, but also the numerator
consists of any arbitrary number of terms, to detect which equations induction
alone did not suffice. But except for the many applications of recurring
series we explained, they are very useful to find the sums of certain series
approximately; we exhibited a specimen of this already in the first chapter
of this book, where we transformed the series into another one which often
consists of a finite number of terms by means of the substitution x = y

1+ny .
And the method could have been extended further, if other functions were
substituted for x. Since then the law of progression of series, which had
to be substituted for the power of x, was not sufficiently clear, it seemed
advisable to mention this generalization just here, after the mentioned law
had already been completely discovered. Nevertheless, considering this with
more attention, we learn that the same task can be done without this law of
progression only by using the method we used here to investigate the law.

§209 Therefore, let an arbitrary series be propounded
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s = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + etc.

which we want to transform into another one whose single terms are fractions
whose denominators proceed according to powers of a formula of this kind

α + βx + γx2 + δx3 + etc.

To start from simpler cases, let us put that it is

s =
A

α + βx
+

Bx
(α + βx)2 +

Cx2

(α + βx)3 +
Dx3

(α + βx)4 + etc.;

Having equated the series to this expression multiply by α + βx everywhere
and it will be

Aα + Bα x + Cαx2 + Dαx3 + +etc.

Aβx + bβ + Cβ + +etc.

}
= A+

Bx
α + βx

+
Cx2

(α + βx)2 + etc.

Put A = Aα and let

Aβ + Bα = A′

Bβ + Cα = B′

Cβ + Dα = C′

Dβ + Eα = D′

etc.;

having divided by x it will be

A′ + B′x + C′x2 + D′x3 + etc. =
B

α + βx
+

Cx
(α + βx)2 +

Dx2

(α + βx)3 + etc.

Multiply by α + βx again and having put

A′β + B′α = A′′

B′β + C′α = B′′

C′β + D′α = C′′

etc.
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it will be

A′α + A′′x + B′′x2 + C′′x3 + etc. = B+
Cx

α + βx
+

Dx2

(α + βx)2 + etc.

Therefore, let B = A′α; and arguing exactly as before, if it is

A′′β + B′′α = A′′′ A′′′β + B′′′α = A′′′′

B′′β + C′′α = B′′′ B′′′β + C′′′α = B′′′′

C′′β + D′′α = C′′′ C′′′β + D′′′α = C′′′′

etc. etc.,

it will be C = A′′α, D = A′′′α, E = A′′′′α; therefore, the sum of the propounded
series will be expressed this way that it is

s =
Aα

α + βx
+

A′αx
(α + βx)2 +

A′αx2

(α + βx)3 +
A′′′αx3

(α + βx)4 + etc.

This same series would have resulted from the substitution

x
α + βx

= y or x =
αy

1− βy
.

§210 This transformation is used with the greatest success, if the propounded
series A + Bx + Cx2 + etc. was of such a nature that it is finally confounded
with a recurring series or, even better, a geometric series resulting from
the fraction P

α+βx . For, then the values A′, B′, C′, D′ etc. will finally vanish
and hence the letters A′′, A′′′, A′′′′ etc. will even more constitute a highly
converging series.

But in like manner we will be able to use trinomial and any polynomial
denominators which will have an extraordinary use, if the propounded series
is finally confounded with a recurring series. Therefore, having propounded
the series

s = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + etc.

set
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s =
A+Bx

α + βx + γx2 +
A′x2 +B′x3

(α + βx + γx2)2 +
A′′x4 +B′′x5

(α + βx + γx2)3 +
A′′′x6 +B′′′x7

(α + βx + γx2)4 + etc.

Multiply by α + βx + γx2 everywhere and having put

Aγ + Bβ + Cα = A′ and A = Aα

Bγ + Cβ + Dα = B′ and B = Aβ + Bα

Cγ + Dβ + Eα = C′

an equation similar to the first will resulting having divided by xx

A′ + B′x + C′x2 + D′x3 + E′x4 + etc.

=
A′ +B′x

α + βx + γxx
+

A′′ +B′′x
(α + βx + γxx)2 +

A′′′ +B′′′x
(α + βx + γxx)3 + etc.

Therefore, if the operation is done as before by putting

A′γ + B′β + C′α = A′′ and A′ = A′α

B′γ + C′β + D′α = B′′ and B = A′β + B′α

C′γ + D′β + E′α = C′′

etc.

and further

A′′γ + B′′β + C′′α = A′′′ and A′′ = A′′α

B′′γ + C′′β + D′′α = B′′′ and B = A′′β + B′′α

C′′γ + D′′β + E′′α = C′′′

etc.

and by investigating the further values in this manner, it will be

s =
Aα + (Aβ + bα)x

α + βx + γxx
+

(A′α + (A′β + B′α))x2

(α + βx + γxx)2 +
(A′′α + (A′′β + B′′α))x4

(α + βx + γxx)3 + etc.
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§211 If one puts x = 1, what can be done without loss of generality, because
α, β, γ can be taken arbitrarily, and it was

s = A + B + C + D + E + F + G + etc.,

having successively put the following values

Aγ + Bβ + Cα = A′ A′γ + B′β + C′α = A′′

Bγ + Cβ + Dα = B′ B′γ + C′β + D′α = B′′ and so fourth

Cγ + Dβ + Eα = C′ C′γ + D′β + E′α = C′′

etc. etc.

but for the sake of brevity one puts

α + β + γ = m,

one will obtain the sum of the propounded series expressed this way

s =


(α + β)

(
A
m

+
A′

m2 +
A′′

m3 +
A′′′

m4 + etc.
)

+α

(
B
m

+
B′

m2 +
B′′

m3 +
B′′′

m4 + etc.
)


§212 The same denominators consisting of more terms can be taken, and
since the operation is easily understood from the preceding, let us only expand
the case for the quadrinomial. Therefore, let

s = A + B + C + D + E + F + G + etc.

Find the following values

Aδ + Bγ + Cβ + Dα = A′

Bδ + Cγ + Dβ + Eα = B′

Cδ + Dγ + Eβ + Fα = C′

etc.
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A′δ + B′γ + C′β + D′α = A′′

B′δ + C′γ + D′β + E′α = B′′

C′δ + D′γ + E′β + F′α = C′′

etc.

A′′δ + B′′γ + C′′β + D′′α = A′′′

B′′δ + C′′γ + D′′β + E′′α = B′′′

C′′δ + D′′γ + E′′β + F′′α = C′′′

etc.

But then let α + β + γ + δ = m and it will be

s =



(α + β + γ)

(
A
m

+
A′

m2 +
A′′

m3 +
A′′′

m4 + etc.
)

(α + β)

(
B
m

+
B′

m2 +
B′′

m3 +
B′′′

m4 + etc.
)

+α

(
C
m

+
C′

m2 +
C′′

m3 +
C′′′

m4 + etc.
)


whence at the same time the progression, if even more parts are attributed to
the denominator m, is most clearly seen.

§213 And it is not necessary at all that the denominators of the fractions, to
which we reduced the sum of the series, are powers of the same formula

α + βx + γx2 + etc.,

but this can be varied in the single terms. In order to clarify this, let us at first
only take two terms and assume that the series

s = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + etc.

is converted into this series of fractions

s =
A

α + βx
+

A′x
(α + βx)(α′ + β′x)

+
A′′x2

(α + βx)(α′ + β′x)(α′′ + β′′x)
+ etc.

At first, multiply both sides by α + βx and put
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Aβ + Bα = A′

Bβ + Cα = B′ and A = Aα

Cβ + Dα = C′

etc.

and having divided by x it will be

A′ + B′ + C′x2 + D′x3 + etc. =
A

α′ + β′x
+

A′′x
(α′ + β′x)(α′′ + β′′x)

+ etc.

Further, in like manner by multiplying by α′ + β′x and then by α′′ + β′′x and
so forth, if one sets

A′β′ + B′α′ = A′′ A′′β′′ + B′′α′′ = A′′′ A′′′β′′′ + B′′′α′′′ = A′′′′

B′β′ + C′α′ = B′′ B′′β′′ + C′′α′′ = B′′′ B′′′β′′′ + C′′′α′′′ = B′′′′ etc.

C′β′ + D′α′ = C′′ C′′β′′ + D′′α′′ = C′′′ C′′′β′′′ + D′′′α′′′ = C′′′′

etc. etc. etc.

it will be

A′ = A′α′, A′′ = A′′α′′, A′′′ = A′′′α′′′ etc.

and hence the propounded series will be converted into this one

s =
Aα

α + βx
+

A′α′x
(α + βx)(α′ + β′x)

+
A′′α′′x

(α + βx)(α′ + β′x)(α′′ + β′′x)
+ etc.,

where the values α, β, α′, β′, α′′, β′′ etc. are arbitrary, but can be taken in such
a way for each case that this new series is highly convergent.

§214 Let us apply this also to trinomial factors and having propounded an
arbitrary series s = A + B + C + D + E + F + G + etc. let
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Aγ + Bβ + Cα = A′ A′γ′ + B′β′ + C′α′ = A′′

Bγ + Cβ + Dα = B′ B′γ′ + C′β′ + D′α′ = B′′

Cγ + Dβ + Eα = C′ C′γ′ + D′β′ + E′α′ = C′′

etc. etc.

A′′γ′ + B′′β′′ + C′′α′′ = A′′′ A′′′γ′′′ + B′′′β′′′ + C′′′α′′′ = A′′′′

B′′γ′′ + C′′β′′ + D′′α′′ = B′′′ B′′′γ′′′ + C′′′β′′′ + D′′′α′′′ = B′′′′

C′′γ′′ + D′′β′′ + E′′α′′ = C′′′ C′′′γ′′′ + D′′′β′′′ + E′′′α′′′ = C′′′′

etc. etc.

Further, for the sake of brevity put

α + β + γ = m

α′ + β′ + γ′ = m′

α′′ + β′′ + γ′′ = m′′

α′′′ + β′′′ + γ′′′ = m′′′

etc.

and the sum of the propounded series will be

s =
α(A + B)

m
+

α′(A′ + B′)
mm′

+
α′′(A′′ + B′′)

mm′m′′
+

α′′′(A′′′ + B′′′)
mm′m′′m′′′

+ etc.

+
βA
m

+
β′A′

mm′
+

β′′A′′

mm′m′′
+

β′′′A′′′

mm′m′′m′′′
+ etc.

§215 Since these formulas extend so far that their use can be seen less clearly,
let us restrict our considerations to the case of the transformation given in §
213 and let x = −1 that one has this series

s = A− B + C− D + E− F + G− etc.

and set
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B − A = A′ B′ − 2A′ = A′′ B′′ − 3A′′ = A′′′ B′′′ − 4A′′′ = A′′′′

C − B = B′ C′ − 2B′ = B′′ C′′ − 3B′′ = B′′′ C′′′ − 4B′′′ = B′′′′

D− C = C′ D′ − 2C′ = C′′ D′′ − 3C′′ = C′′′ D′′′ − 4C′′′ = C′′′′

etc. etc. etc. etc.

Having found these values the sum of the propounded series will be equal to
the following series

s =
A
2
− A′

2 · 3 +
A′′

2 · 3 · 4 −
A′′′

2 · 3 · 4 · 5 +
A′′′′

2 · 3 · 4 · 5 · 6 − etc.

Therefore, any propounded series can be transformed into innumerable other
ones equal to it, among which without any doubt a most convergent series will
be found by means of which the propounded sum can be found approximately.

§216 But let us return to the invention of series whose law of progression is
revealed by differential calculus. Therefore, because this was already achieved
for algebraic quantities, let us proceed to transcendental functions and let the
series equal to this logarithm be in question

s = ln(1 + αx + βx2 + γx3 + δx4 + εx5 + etc.);

assume that the series in question is this one

s = Ax +Bx2 + Cx3 +Dx4 + Ex5 + Fx6 + etc.

Therefore, because from the differentiation of the first equation it follows

ds
dx

=
α + 2βx + 3γx2 + 4δx3 + 5εx4 + etc.

1 + αx + βx2 + γx3 + δx4 + εx5 + etc.
,

it will be

(1 + αx + βx2 + γx3 + δx4 + etc.)
ds
dx

= α + 2βx + 3γx2 + 4δx3 + etc.

But since from the assumed equation it is
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ds
dx

= A+ 2Bx + 3Cx2 + 4Dx3 + 5Ex4 + etc.,

having done the substitution this equation results

A + 2Bx + 3Cx2 + 4Dx3 + 5Ex4 + etc.

+ Aα + 2Bα + 3Cα + 4Dα + etc.

+ Aβ + 2Bβ + 3Cβ + etc.

+ Aγ + 2Bγ + etc.

+ Aδ + etc.

= α + 2βx + 3γx2 + 4δx3 + 5εx4 + etc.

From it one obtains the following determinations

A = α

B = −1
2
Aα + β

C = −2
3
Bα− 1

3
Aβ + γ

D = −3
4
Cα − 2

4
Bβ− 1

4
Aγ + δ

E = −4
5
Dα − 3

5
Cβ − 2

5
Bγ− 1

5
Aδ + etc.

etc.

§217 Now, let this exponential quantity be propounded

s = eαx+βx2+γx3+δx4+εx5+etc.

in which e denotes the number whose hyperbolic logarithm is = 1, and
assume this series in question

s = 1 +Ax +Bx2 + Cx3 +Dx4 + Ex5 + etc.

For, from the case x = 0 it is plain that the first term must be 1. Therefore,
since by taking logarithms it is

ln s = α + βx2 + γx3 + δx4 + εx5 + ζx6 + etc.,
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having taken the differentials it will be

ds
dx

= s(α + 2βx + 3γx2 + 4δx3 + 5εx4 + etc.)

But from the assumed equation it will be

ds
dx

= A + 2Bx + 3Cx2 + 4Dx3 + 5Ex4 + etc.

= α + Aαx + Bαx2 + Cαx3 + Dαx4 + etc.

+ 2β + 2Aβ + 2Cβ + 2Cβ + etc.

+ 3γ + 3Aγ + 3Bγ + etc.

+ 4δ + 4Aδ + etc.

+ 5ε + etc.,

from which the following determinations of the letters A, B, C, D etc. result

A = α

B = β +
1
2
Aβ

C = γ +
2
3
Aβ +

1
3
Bα

D = δ +
3
4
Aγ +

2
4
Bβ +

1
4
Cα

E = ε +
4
5
Aδ +

3
5
Bγ +

2
5
Cβ +

1
5
Dα

etc.

§218 If also the arc, whose sine or cosine is in question, is expressed by
a binomial or polynomial or even an infinite series, this way one can even
express its sine and cosine by means of an infinite series. But to do this the
most convenient way, it does not suffice to proceed to the first differentials, but
it is necessary, that the differentials of the second order are used. Therefore,
let

s = sin(αx + βx2 + γx3 + δx4 + εx5 + etc.)

and assume the series in question to be
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s = Ax +Bx2 + Cx3 +Dx4 + Ex5 + etc.

For, it is plain that the first term vanishes; but since one has to descend to
the second differentials, the coefficient A also has to be determined from
elsewhere, which will happen, if we put x to be infinitely small. For then,
because of the arc = αx the sine itself will become equal to it and it will
therefore be A = α. Now, for the sake of brevity let us put

z = αx + βx2 + γx3 + etc.,

that it is s = sin z; by differentiating it will be ds = dz cos z and by differentia-
ting again it will be dds = ddz cos z− dz2 sin z. Therefore, since it is sin z = s
and cos z = ds

dz , it will be

dds =
dsddz

dz
− sdz2 and dzdds + sdz3 = dsddz.

§219 Let us put that the arc z is only expressed by a binomial and it is

z = αx + βx2;

it will be

dz = (α + 2βx)dx

and having put dx to be constant

ddz = 2βdx2

and

dz3 = (α3 + 6α2βx + 12αβ2x2 + 8β3x3)dx3.

Further, because of s = Ax +Bx2 + Cx3 +Dx4 + etc. it will be

ds
dx

= A+ 2Bx + 3Cx2 + 4Dx3 + etc.

and

dds
dx2 = 2B+ 6Cx + 12Dx2 + etc.
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Having substituted these values in the differential equation it will be

dzdds
dx3 = 1 · 2Bα + 2 · 3Cαx + 3 · 4Dαx2 + 4 · 5Eαx3 + 5 · 6Fαx4 + etc.

+ 2 · 1 · 2Bβ + 2 · 2 · 3Cβ + 2 · 3 · 4Dβ + 2 · 4 · 5Eβ + etc.

sdz3

dx3 = + Aα3 + Bα3 + Cα3 + Dα3 + etc.

+ 6Aα2β + 6Bα2β + 6Cα2β + etc.

+ 12Aαβ2 + 12Bβ2 + etc.

+ 8Aβ3 + etc.

dsddz
dx3 = 2Aβ + 4Bβ + 6Cβ + 8Dβ + 10Eβ + etc.

Therefore, the coefficients will be defined the following way:

B =
2Aβ

2α

C = 0 − Aα2

2 · 3

D = − 2Cβ

4α
− 6Aαβ

3 · 4 − Bα2

3 · 4

E = − 4Dβ

5α
− 12Aβ2

4 · 5 −
6Bαβ

4 · 5 − Cα2

4 · 5

F = − 6Eβ

6α
− 8Aβ3

5 · 6α
− 12Bββ

5 · 6 − 6Cαβ

5 · 6 −
Dα2

5 · 6

G = − 8Fβ

7α
− 8Bβ3

6 · 7α
− 12Cββ

6 · 7 − 6Dαβ

6 · 7 −
Eα2

6 · 7
etc.

Having found these values it will be

sin(αx + βx2) = Ax +Bx2 + Cx3 +Dx4 + etc.

while A = α.
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§220 In like manner the cosine of any angle is converted into a series; but
since an arc is very rarely expressed by a polynomial, let us show the use of
differential equations for the invention of the series for the cosine of the arc x.
Therefore, let s = cos x and assume

s = 1−Ax2 +Bx4 − Cx6 +Dx8 − etc.

Since it is ds = −dx sin x and dds = −dx2 cos x = −sdx2, it will be

dds + sdx2 = 0;

having done the substitution it will be

dds
dx2 = −1 · 2A + 3 · 4Bx2−5 · 6Cx4 + 7 · 8Dx6 − etc.

s = 1 − Ax2 −Bx4 − Cx6 + etc.

and by comparing the coefficients it follows

A =
1

1 · 2
B =

A

3 · 4 =
1

1 · 2 · 3 · 4
C =

B

5 · 6 =
1

1 · 2 · 3 · · · 6
D =

C

7 · 8 =
1

1 · 2 · 3 · · · 8
etc.

Therefore, it is plain, what we demonstrated in more detail above already, that
it is

cos x = 1− x2

1 · 2 +
x4

1 · 2 · 3 · 4 −
x6

1 · 2 · 3 · · · 6 +
x8

1 · 2 · 3 · · · 8 − etc.;

the first series for the sine having put β = 0 and α = 1 will give

sin x =
x
1
− x3

1 · 2 · 3 +
x5

1 · 2 · 3 · 4 · 5 −
x7

1 · 2 · 3 · · · 7 +
x9

1 · 2 · 3 · · · 9 − etc.
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§221 From the well-known series for the sine and cosine the series for the
tangent, cotangent, secant, cosecant of a certain angle are deduced. For, the
tangent results, if the sine is divided by the cosine, the cotangent, if the cosine
is divided by the sine, the secant, if the radius 1 is divided by the cosine, and
the cosecant, if the radius is divided by the sine. But the series result from
these divisions seem to be most irregular; but, with the exception of the series
exhibiting the secant, all remaining the others can be reduced to a simple law
of progression by means of the Bernoulli numbers A, B, C, D etc. For, since
we found above (§ 127) that it is

Au2

1 · 2 +
Bu4

1 · 2 · 3 · 4 +
Cu6

1 · 2 · 3 · · · 6 +
Du8

1 · 2 · 3 · · · 8 + etc. = 1− u
2

cot
1
2

u,

having put 1
2 u = x it will be

cot x =
1
x
− 22Ax

1 · 2 −
24Bx3

1 · 2 · 3 · 4 −
26Cx5

1 · 2 · 3 · · · 6 −
28Dx7

1 · 2 · 3 · · · 8 − etc.,

and if one puts 1
2 x for x, it will be

cot
1
2

x =
2
x
− 2Ax

1 · 2 −
2Bx3

1 · 2 · 3 · 4 −
2Cx5

1 · 2 · 3 · · · 6 −
2Dx7

1 · 2 · 3 · · · 8 − etc.,

§222 But hence the tangent of any arc will be expressed by means of an
infinite series the following way. Because it is

tan 2x =
2 tan x

1− tan x
,

it will be

cot 2x =
1

2 tan x
− tan x

2
=

1
2

cot x− 1
2

tan x

and hence

tan x = cot x− 2 cot 2x.

Therefore, because it is
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cot x =
1
x
− 22Ax

1 · 2 −
24Bx3

1 · 2 · 3 · 4 −
26Cx5

1 · 2 · · · 6 −
28Dx7

1 · 2 · · · 8 − etc.,

2 cot 2x =
1
x
− 24Ax

1 · 2 −
28Bx3

1 · 2 · 3 · 4 −
212Cx5

1 · 2 · · · 6 −
216Dx7

1 · 2 · · · 8 − etc.,

by subtracting this series from the first it will be

tan x =
22(22 − 1)Ax

1 · 2 +
24(24 − 1)Bx3

1 · 2 · 3 · 4 +
26(26 − 1)Cx5

1 · 2 · · · 6 +
28(28 − 1)Dx7

1 · 2 · · · 8 + etc.

Therefore, if the numbers A, B, C, D etc. found in § 182 are introduced here,
it will be

tan x =
2Ax
1 · 2 +

23Bx3

1 · 2 · 3 · 4 +
25Cx5

1 · 2 · 3 · 6 +
27Dx7

1 · 2 · · · 8 + etc.

§223 But the cosecant will be found the following way. Since it is

cot x = tan x + 2 cot 2x =
1

cot x
+ 2 cot 2x,

it will be

cot2 x = 2 cot x cot 2x + 1

and having extracted the root

cot x = cot 2x + csc 2x,

whence it is

csc 2x = cot x− cot 2x

and having put x for 2x

csc x = cot
1
2

x− cot x.

Therefore, because we have the cotangent, namely
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cot
1
2

x =
2
x
− 2Ax

1 · 2 −
2Bx3

1 · 2 · 3 · 4 −
2Cx5

1 · 2 · · · 6 − etc.

cot x =
1
x
− 22Ax

1 · 2 −
24Bx3

1 · 2 · 3 · 4 −
25Cx5

1 · 2 · · · 6 − etc.,

having subtracted this series from the first, it will be

csc x =
1
x
+

2(2− 1)Ax
1 · 2 +

2(23 − 1)Bx3

1 · 2 · 3 · 4 +
2(25 − 1)Cx5

1 · 2 · · · 6 + etc.

§224 But the secant cannot be expressed by means of these Bernoulli num-
bers, but it requires other numbers which enter the sums of the odd powers
of the reciprocals. For, if one puts

1− 1
3
+

1
5
− 1

7
+

1
9
− etc. = α · π

22

1− 1
33 +

1
53 −

1
73 +

1
93 − etc. =

β

1 · 2 · π3

24

1− 1
35 +

1
55 −

1
75 +

1
95 − etc. =

γ

1 · 2 · 3 · 4 ·
π5

26

1− 1
37 +

1
57 −

1
77 +

1
97 − etc. =

δ

1 · 2 · · · 6 ·
π7

28

1− 1
39 +

1
59 −

1
79 +

1
99 − etc. =

δ

1 · 2 · · · 8 ·
π9

210

1− 1
311 +

1
511 −

1
711 +

1
911 − etc. =

δ

1 · 2 · · · 10
· π11

212

etc.,

it will be
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α = 1

β = 1

γ = 5

δ = 61

ε = 1385

ζ = 50521

η = 2702765

θ = 199360981

ι = 19391512145

κ = 20404879675441etc.

and from these values one will obtain

sec x = α +
β

1 · 2 xx +
γ

1 · 2 · 3 · 4 x4 +
δ

1 · 2 · · · 6 x6 +
ε

1 · 2 · · · 8 x8 + etc.

§225 To show the connection of this series to the numbers α, β, γ, δ etc., let
us consider the series treated above [§ 33]

π

n sin m
n π

=
1
m

+
1

n−m
− 1

m + n
− 1

2n−m
+

1
2n + m

+
1

3n−m
− etc.

Put m = 1
2 n− k and it will be

π

2n cos k
n

=
1

n− 2k
+

1
n + 2k

− 1
3n− 2k

− 1
3n + 2k

+
1

5n− 2k
+ etc.

Let kπ
n = x or kπ = nx; it will be

π

2n
sec x =

π

nπ − 2nx
+

π

nπ + 2nx
− π

3nπ − 2nx
− π

3nπ + 2nx
+

π

5nπ − 2nx
+ etc.

or
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sec x =
2

π − 2x
+

2
π + 2x

− 2
3π − 2x

− 2
3π + 2x

+
2

5π − 2x
+ etc.

or

sec x =
4π

π2 − 4x2 −
4 · 3π

9π2 − 4xx
+

4 · 5π

25π2 − 4xx
− 4 · 7π

49π2 − x2 + etc.

If now the single terms are converted into series, it will be

sec x =
4
π

(
1− 1

3
+

1
5
− 1

7
+

1
9
− etc.

)
+

24x2

π3

(
1− 1

33 +
1
53 −

1
73 +

1
93 − etc.

)
+

26x4

π5

(
1− 1

35 +
1
55 −

1
75 +

1
95 − etc.

)
etc.;

if the values assigned above are substituted for these series, the same series
we gave for the secant will result.

§226 Therefore, at the same time the law is plain, according to which the
numbers α, β, γ, δ etc. appearing in the expressions of the sums of the odd
powers, proceed. For, because it is

sec x =
1

cos x
= α +

β

1 · 2 x2 +
γ

1 · 2 · 3 · 4 x4 +
δ

1 · 2 · · · 6 x6 + etc.,

it is necessary that this series is equal to the fraction

1

1− xx
1·2 +

x4

1·2·3·4 −
x6

1·2···6 +
x6

1·2···8 − etc.
;

therefore, having equated the two expressions it will be
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1 = α +
β

1 · 2 x2 +
γ

1 · 2 · 3 · 4 x4 +
δ

1 · 2 · · · 6 x6 +
ε

1 · 2 · · · 8 x8 + etc.

− α

1 · 2 − β

1 · 2 · 1 · 2 − γ

1 · 2 · 1 · · · 4 − δ

1 · 2 · 1 · · · 6 − etc.

+
α

1 · 2 · 3 · 4 +
β

1 · · · 4 · 1 · 2 +
γ

1 · · · 4 · 1 · · · 4 − etc.

− α

1 · 2 · · · 6 +
β

1 · · · 6 · 1 · · · 2 − etc.

+
α

1 · 2 · · · 8 + etc.,

whence these equations follow

α = 1

β =
2 · 1
1 · 2α

γ =
4 · 3
1 · 2 β − 4 · 3 · 2 · 1

1 · 2 · 3 · 4α

δ =
6 · 5
1 · 2γ− 6 · 5 · 4 · 3

1 · 2 · 3 · 4 β +
6 · · · 1
1 · · · 6α

ε =
8 · 7
1 · 2δ − 8 · 7 · 6 · 5

1 · 2 · 3 · 4γ +
8 · · · 3
1 · · · 6 β− 8 · · · 1

1 · · · 8α

etc.

And from these formulas the values of these letters were found which we
exhibited in § 224 and by means of which the sums of the series contained in
this form

1− 1
3n +

1
5n −

1
7n +

1
9n − etc.,

if n was an odd number, can be expressed.
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